Martensitic Transformation and Plastic Deformation in 18-14 Stainless Steel Single Crystals
نویسندگان
چکیده
منابع مشابه
Analysis of deformation induced martensitic transformation in stainless steels
Many studies monitoring the formation of martensite during the tensile deformation of austenite report data which are, in principle, affected by both the applied stress and the resulting plastic strain. It is not clear in these circumstances whether the transformation is stress induced (i.e. the stress provides a mechanical driving force) or whether the generation of defects during deformation ...
متن کاملElectrochemical Characterization of a Martensitic Stainless Steel
This paper focused on the characterization of electrochemical behavior of a martensitic stainless steel in the acidic solutions. For this purpose, electrochemical parameters were derived from potentiodynamic polarization, Mott Schottky analysis and electrochemical impedance spectroscopy (EIS) techniques. The potentiodynamic polarization results showed that corrosion current density of AISI 420 ...
متن کاملPlastic deformation of CoO single crystals
2014 Constant strain rate compressions along 001 > have been performed on CoO single crystals (03B5 ~ 6 x 10-5 s-1). Yield stresses and work hardening rates have been measured between 77 K and 1 400 K; CoO is very strong when compared to similar compounds. Vickers indentations have been performed on { 100 }, { 110 } and { 111 } faces around the Néel temperature, i.e. between 0 °C and 40 °C...
متن کاملPlastic deformation of single nanometer-sized crystals.
We report in situ electron microscopy observations of the plastic deformation of individual nanometer-sized Au, Pt, W, and Mo crystals. Specifically designed graphitic cages that contract under electron irradiation are used as nanoscopic deformation cells. The correlation with atomistic simulations shows that the observed slow plastic deformation is due to dislocation activity. Our results also...
متن کاملMartensitic Transformation in NiMnGa Single Crystals: Numerical Simulation and Experiments
In this article, we develop a continuum mechanical model to simulate deformation and phase transformation processes in shape memory alloys. The model is based on a detailed description of the stored energy. Furthermore, the energy dissipation due to phase transformations is taken into account via the maximum-dissipation principle. The results from the 3D numerical simulations of stress induced ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Tetsu-to-Hagane
سال: 1975
ISSN: 0021-1575,1883-2954
DOI: 10.2355/tetsutohagane1955.61.11_2561